Das Reaktionsverhalten von Cp_2NbCl_2 gegenüber WF_6 —Struktur von $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^{2-}$

Axel Schulz und Thomas M. Klapötke

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Sekr. C 2, Straße des 17. Juni 135, D-10623 Berlin (Deutschland)

T. Stanley Cameron und P.K. Bakshi

Department of Chemistry, Dalhousie University, Halifax, N.S., B3H 4J3 (Canada) (Eingegangen den 14. Dezember 1993)

Abstract

The oxidation of Cp_2NbCl_2 with pure WF_6 in SO₂ solution yielded the cationic metallocene species $[Cp_2NbCl_2]^+[WF_6]^$ essentially in quantitative yield. The same reaction carried out in the presence of either equimolar amounts or a two-fold excess of HCN led to the preparation of the new niobocenium salt $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^{2-}$ which was studied by single crystal X-ray diffraction. This compound represents the first example of a structurally characterized metallocene- WF_6^- complex, and crystallizes in the tetragonal system: space group, $P4_12_12$ (No. 92), a = 11.083(8) Å, c = 48.285(9) Å; Z = 8; R = 0.0759, $R_W = 0.0841$.

Zusammenfassung

Die Oxidation von Cp₂NbCl₂ mit reinem WF₆ führt in SO₂-Lösung zur Synthese von $[Cp_2NbCl_2]^+[WF_6]^-$ in nahezu quantitativer Ausbeute. Die analoge Reaktion führt unter Anwesenheit der äquimolaren Menge oder eines zweifachen Überschusses an HCN zur Ausbildung des Niobocenium-Komplexsalzes $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^2^-$, von dem eine Röntgenstrukturanalyse angefertigt wurde. Diese Verbindung repräsentiert den ersten structurell charakterisierten Vertreter eines Metallocen-WF₆⁻-Komplexes und kristallisiert im tetragonalen System: Raumgruppe P4₁2₁2 (Nr. 92), a = 11.083(8) Å, c = 48.285(9) Å; Z = 8; R = 0.0759, $R_W = 0.0841$.

Key words: Niobium; X-ray diffraction; Oxidation; Metallocenes

1. Einleitung

Im Rahmen früherer Arbeiten haben wir bereits den Einsatz von Perfluoroelement-Verbindungen als Oxidationsmittel in der metallorganischen Chemie untersucht und auf thermodynamischer Basis diskutiert [1]. Besondere Aufmerksamkeit verdienen in diesem Zusammenhang Oxidationsmittel wie AsF₅, SbF₅, WF₆ und UF₆. Im Bereich der Chemie von Elementen der 5. Gruppe gelang hierbei die Darstellung und strukturelle Charakterisierung der gemäß Gl. (1) gewonnenen Komplexsalze [2-4].

$$Cp_2MCl_2 + 3/2EF_5 \rightarrow [Cp_2MCl_2]^+ [EF_6]^- + 1/2EF_3$$

$$\mathbf{M} = \mathbf{V}, \, \mathbf{Nb}; \qquad \mathbf{E} = \mathbf{As}, \, \mathbf{Sb} \tag{1}$$

Darüber hinaus konnten Verbindungen des Typs $[Cp_2 NbCl_2]^+[M'F_6]^-$ (M' = W, U) in hohen Ausbeuten dargestellt, jedoch bisher nicht röntgenographisch charakterisiert werden [5].

Nachdem uns kürzlich mit der Synthese von $[Cp_2 MoCl_2]^+[WF_6]^-$ und $[Cp_2WCl_2]_2^{2+}[W_4F_{18}]^{4-}$ ebenfalls im Bereich der Chemie der 6. Gruppe der Einsatz von WF₆ als Oxidationsmittel gelungen ist und die Verbin-

Correspondence to: Priv. Doz. Dr. T.M. Klapötke.

dung $[Cp_2WCl_2]_2^{2+}[W_4F_{18}]^{4-}$ auch strukturanalytisch aufgeklärt werden konnte [6], interessierte uns nun eine eingehendere Studie des Redox-Verhaltens im System Cp_2NbCl_2/WF_6 . Es ist bekannt daß Niobocendichlorid mit reinem WF₆ in einer Einelektronenübertragungs-Reaktion stöchiometrisch gemäß Gl. (2) nahezu quantitativ zum Komplexkation $[Cp_2NbCl_2]^+$ oxidiert wird.

$$Cp_2NbCl_2 + WF_6 \rightarrow [Cp_2NbCl_2]^+ [WF_6]^-$$
(2)

Andererseits erfolgt die Oxidation des Vanadium-Zentralmetallatoms mittels AsF_5 , SbF_5 oder WF_6 im leichteren Homologen Cp_2VCl_2 erst nach Zusatz katalytischer Mengen an Base (Fluorid, HF, HCN) [7]. Im folgenden berichten wir nun über die Umsetzung von Cp_2NbCl_2 mit WF_6 in reinem SO_2 sowie über die gleiche Reaktion in Anwesenheit von HCN und die Kristallstruktur des ersten Nioboceniumhexafluorowolframat-Komplexes.

2. Ergebnisse und Diskussion

2.1. Chemische Aspekte

In Einklang mit früheren Untersuchungen und thermodynamischen Abschätzungen reagiert Cp2NbCl2 mit reinem WF₆ in SO₂-Lösung quantitativ zum Komplexsalz $[Cp_2NbCl_2]^+[WF_6]^-$ (Gl. 2). Führt man diese Reaktion jedoch in Anwesenheit einer äquimolaren Menge an Cyanwasserstoff oder auch mit HCN im Überschuß durch (ebenfalls in SO_2), so wird nach Aufarbeitung und Umkristallisation aus SO₂ ein recht komplexes Produktgemisch erhalten. Hieraus konnten die folgenden Spezies analytisch bzw. spektroskopisch nachgewiesen werden: $[Cp_2NbCl_2]^+[WF_6]^-$ (IR nach fraktionierter Kristallisation, Elementaranalyse), [Cp₂ NbCl₂]⁺₄[WF₆]⁻₂[WCl₆]²⁻ (Strukturanalyse nach Umkristallisation, Elementaranalyse), $[Cp_2NbF_2]^+$ (Hinweise aus Massenspektrum des Rohproduktes) und $WF_{5-n}Cl_n$ (Massenspektrum aus Rohprodukt). Die Tatsache, daß bei der Umsetzung von Cp₂NbCl₂ mit WF₆ in Anwesenheit von HCN eindeutig Species wie $[WCl_6]^{2-}$, $WF_{5-n}Cl_n$, $WF_{3-n}Cl_n$ und $[Cp_2NbF_2]^+$ gefunden wurden, was bei der HCN-freien Reaktionsführung nicht der Fall ist, belegt, daß HCN den Nb-Cl/W-F-Austausch fördert. Hierbei ist wahrscheinlich, daß HCN (oder CN⁻) intermediär an das 16-Elektronen-Kation $[Cp_2NbCl_2]^+$ unter Ausbildung der 18-Elektronen-Spezies [Cp₂NbCl₂[HCN)]⁺ (oder [Cp₂ NbCl₂(CN)]) koordinieren und somit die Abgabe von Chlorid begünstigen. Auch wenn es derzeit nicht möglich erscheint, für diese komplexe Reaktion eine Gleichung aufzustellen, die auch gleichzeitig den Me-

Fig. 1. PLUTO-Darstellung einer $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^{2-}$ Einheit (zur besseren Übersicht wurde auf die Numerierung verzichtet, sie ergibt sich aber aus Tabelle 1).

chanismus wiedergibt, scheint doch die durchgeführte Umsetzung im wesentlichen gemäß Gl. 3 abzulaufen.

$$7 \operatorname{Cp}_{2}\operatorname{NbCl}_{2} + 6 \operatorname{WF}_{6} \xrightarrow{[\operatorname{HCN}], \operatorname{SO}_{2}} \\ [\operatorname{Cp}_{2}\operatorname{NbCl}_{2}]_{4}^{+} [\operatorname{WF}_{6}]_{2}^{-} [\operatorname{WCl}_{6}]^{2-} \\ + 3[\operatorname{Cp}_{2}\operatorname{NbF}_{2}][\operatorname{WF}_{6}]^{-} (3)$$

Nach dreifacher Umkristallisation eines gemäß Gl. 3 erhaltenen Produktgemisches aus SO₂ konnte die Verbindung $[Cp_2NbCl_2[_4^+[WF_6]_2^-[WCl_6]^{2-}]$ aus tief-rotbrauner Lösung in Form brauner Kristallnadeln isoliert werden, welche zu einer röntgenstrukturanalytischen Charakterisierung geeignet waren.

2.2. Strukturelle Aspekte

Die Struktur von $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^{2-}$ ist gelöst und erfolgreich verfeinert worden [8-11]. Figur 1 zeigt eine PLUTO-Darstellung einer Formeleinheit dieser Verbindung [12], wobei das $[WCl_6]^{2-}$ Dianion eine spezielle Symmetrieposition besetzt. Die Ionen des Kristalls formen eine tetragonale Elementarzelle mit den Gitterkonstanten a = 11.083(8) Å und c =48.285(9) Å sowie V = 5931(8) Å³ und Z = 8. Die Lösung und Verfeinerung der Struktur führte zu der Raumgruppe $P4_12_12$ (Nr. 92). Eine Zusammenstellung aller wichtigen Bindungsabstände und -winkel findet sich in Tabelle 1.

Bezüglich ihrer Strukturparameter entsprechen die beiden nicht identischen Niobocenium-Kationen in $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^2^-$ den Enwartungen. Während im neutralen Cp_2NbCl_2 die Nb-Cl-Abstände TABELLE 1. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°) von $[Cp_2NbCl_2]_4^4 [WF_6]_2^{-[WCl_6]^{2-a}}$

Ion		Abstand (Å)		Winkel (°)
[Cp ₂ NbCl ₂] ⁺	Nb(1)-Cl(5) Nb(1)-Cl(6) Nb(2)-Cl(7) Nb(2)-Cl(8) Nb(1)-C(3) C(1)-C(2) ^b	2.34(2) 2.36(2) 2.34(2) 2.32(2) 2.38(3) 1.42(4)	Cl(5)–Nb(1)–Cl(6) Cl(7)–Nb(2)–Cl(8) C(1)–C(2)–C(3) °	98.8(6) 96.6(6) 108(2)
[WF ₆] ⁻	W(2)-F(1) W(2)-F(2) W(2)-F(3) W(2)-F(4) W(2)-F(5) W(2)-F(6)	1.81(3) 1.81(3) 1.81(3) 1.81(3) 1.82(3) 1.80(3)	F(1)-W(2)-F(2) $F(1)-W(2)-F(3)$ $F(1)-W(2)-F(4)$ $F(1)-W(2)-F(5)$ $F(1)-W(2)-F(6)$ $F(2)-W(2)-F(3)$ $F(2)-W(2)-F(4)$ $F(3)-W(2)-F(4)$ $F(3)-W(2)-F(5)$ $F(3)-W(2)-F(6)$ $F(2)-W(2)-F(5)$ $F(4)-W(2)-W(6)$	179(2) 90(2) 90(2) 90(2) 90(2) 90(2) 90.4(15) 89.1(15) 177.9(15) 89.1(15) 91(2) 88.8(14) 90.9(15) 178.6(15)
[WCI ₆] ²⁻	W(1)-Cl(1) W(1)-Cl(2) W(1)-Cl(2) W(1)-Cl(3) W(1)-Cl(4) W(1)-Cl(4)	2.419(9) 2.474(13) 2.474(13) 2.423(8) 2.427(13) 2.427(13)	$\begin{array}{l} F(3)-W(2)-F(6)\\ Cl(1)-W(1)-Cl(2)\\ Cl(1)-W(1)-Cl(3)\\ Cl(2)-W(1)-Cl(4)\\ Cl(2)-W(1)-Cl(2)\\ Cl(2)-W(1)-Cl(3)\\ Cl(2)-W(1)-Cl(4)\\ Cl(2)-W(1)-Cl(4)\\ Cl(3)-W(1)-Cl(4)\\ Cl(4)-W(1)-Cl(4)\\ \end{array}$	89.7(4) 180.0(3) 90.3(4) 179.4(4) 90.3(4) 91.0(4) 89.0(4) 89.7(4) 179.4(4)

^a Markierte Atome (Cl') stehen zu unmarkierten (Cl) in folgendem symmetrischen Zusammenhang: Y, X, -Z + 1.0. ^b Sämtliche gebundenen C-C-Abstände betragen 1.42(4) Å. ^c Sämtliche C-C-C-Winkel betragen (108(2)°.

2.47 Å und der Cl-Nb-Cl-Winkel 85.6° betragen [13], liegen die Werte der in der vorliegenden Arbeit untersuchten kationischen Spezies bei d(Nb-Cl) = 2.32-2.36Å und $\langle (Cl-Nb-Cl) = 97$ bzw. 99° und können daher mit den für [Cl₂NbCl₂]⁺[SbF₆]⁻ gefundenen Parametern von d(Nb-Cl) = 2.34 Å und < (Cl-Nb-Cl) =98.1° verglichen werden [2]. Die kürzeren Nb-Cl-Abstände in der kationischen Spezies (16-Elektronen-Komplex) im Vergleich zur Neutralverbindung (17-Elektronen-Komplex) und die dadurch bedingte Cl-Nb-Cl-Bindungswinkelaufweitung können einerseits durch die aufgrund der positiven Ladung eintretende Orbitalkontraktion im Kation und andererseits durch die Besetzung eines nichtbindenden bzw. schwach antibindenden Orbitals im Neutralkomplex erklärt werden [14].

3. Experimenteller Teil

Eine ausführliche Beschreibung der angewandten Arbeitstechnik findet sich in der Literatur [15]. Cp_2Nb-Cl_2 (Aldrich) wurde eingesetzt wie erhalten, HCN nach Literaturvorschrift synthetisiert [16], WF₆ (Air Products) durch einfache Destillation gereinigt und SO₂ (Messer Griesheim) über CaH₂ getrocknet und frisch abdestilliert.

3.1. Darstellung von $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^2^-$

In einem 25 mL Quarzglas-Reaktionsgefäß werden auf eine gefrorene Lösung von 0.315 g (1.07 mmol) Cp₂NbCl₂ in 15 mL SO₂ bei -196°C 0.745 g (2.5 mmol) WF₆ und 0.116 g (4.3 mmol) HCN aufkondensiert. Die Reaktionsmischung wird dann auf Raumtemperatur erwärmt und 24 h bei dieser Temperatur gerührt. Nach Abpumpen aller flüchtigen Komponenten i. Vak. können nach dreifacher Umkristallisation des Rohproduktes aus je 10 mL SO₂ tief-rotbraune Kristallnadeln von $[Cp_2NbCl_2]_4^+[WF_6]_2^-[WCl_6]^{2-}$ isoliert werden. Ausbeute: 0.06 g (18%, bezogen auf Gl. 3). $C_{40}H_{40}Cl_{14}W_3Nb_4F_{12}[2168.26]$ (ber.): C, 21.8 (22.2); H, 1.7 (1.9)%. IR (Pulver zwischen KBr-Platten, 20°C, ν in cm⁻¹): 3120 m (ν -CH, Cp); 1438 s (ω -CC, Cp); 1030 sh, 1014 m, 985 m (δ-CH, Cp); 857 s (γ-CH, Cp); 580 s,br (ν_3 -WF₆). (Sämtliche für das (WCl₆]²⁻-Ion zu erwartenden IR-aktiven Banden liegen unterhalb von 300 cm^{-1} und wurden daher nicht beobachtet [17].)

3.2. Röntgenstrukturanalyse

Ein tief-rotbrauner Kristall der Verbindung $[Cp_2Nb-Cl_2]_4^+[WF_6]_2^-[WCl_6]^{2-}$ wurde in eine Glaskapillare

TABELLE 2. Kristalldaten von [Cp₂NbCl₂]⁺[WF₆]⁻[WCl₆]²⁻

	2 0 2 0
Empirische Formel	$C_{20}H_{20}Cl_7W_{15}Nb_2F_6$
Molmasse (g mol $^{-1}$)	1084.13
Kristallfarbe	tief-rotbraun
Kristallgröße (mm)	$0.30 \times 0.25 \times 0.15$
Kristallsystem	tetragonal
Zahl der Reflexe zur Zellbestimmung	
(20-Modus)	20 (6.7–9.7°)
Omega-Scan Peak-Breite bei	
halber Höhe	0.27
Gitterparameter (Å)	a = 11.083(8), c = 48.285(9)
(Å ³)	V = 5931(8)
Raumgruppe	P4 ₁ 2 ₁ 2 (Nr. 92)
Z (bezogen auf die o.g. empirische	
Formel)	8
$D_{ber} (g cm^{-3})$	2.428
F ₀₀₀	4048
$\mu(Mo-K\alpha)(cm^{-1})$	73.38

[wCl ₆]	
Diffraktometer	Rigaku AFC 5R
Strahlung	$Mo-K\alpha \ (\lambda = 0.71069 \text{ \AA})$
Temperatur	18±1°C
Scan-Modus	ω-20
Scan-Rate	$2.0^{\circ}/\min(in \omega)$
$2\Theta_{max}$	46.0°
Zahl der gemessene	n
Reflexionen	2549
Korrekturen	Lorentz-Polarisation,
	Absorption (TransFakt. 0.623–1.328)

TABELLE 3. Röntgen-Intensitätsmessung an $[Cp_2NbCl_2]_4^+[WF_6]_2^ [WCl_4]^{2-}$

eingeschmolzen. Die Zusammenstellung der Kristalldaten findet sich in Tabelle 2, eine solche der Intensitätsmessungen in Tabelle 3; die Daten für die Strukturlösung und die Verfeinerung sind in Tabelle 4 zusammengestellt.

Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57925 angefordert werden.

TABELLE 4. Strukturlösung und Strukturverfeinerung von $[Cp_2\ NbCl_2]_4^+[WF_6]_2^-[WCl_6]^2^-$

Strukturlösung	Direkte Methoden
Verfeinerung	4-Block-Matrix least-squares
Minimierte Funktion	$\Sigma w(F_0 - F_c)^2$
w-Funktion	
(Gewichtung der kl. Quadrate)	$w = k / [\sigma^2(F) + g(F)^2];$
	k = 3.5847, g = 0.002028
ρ-Faktor	0.01
Anomale Dispersion	alle Nicht-Wasserstoff-Atome
Reflexe mit $l > 3.00\sigma(l)$	1113
Zahl der Variablen	362
R; R.,	0.0759; 0.0841
GooF-Faktor	3.524

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Kl 636/1-3) und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit.

Literatur

- 1 P. Gowik und T.M. Klapötke, J. Organomet. Chem., 398 (1990) 1.
- 2 P. Gowik, T.M. Klapötke und J. Pickardt, Organometallics, 8 (1989) 2953.
- 3 F.H. Görlitz, P.K. Gowik, T.M. Klapötke, D. Wang, R. Meier und J. v. Welzen, J. Organomet. Chem., 408 (1991) 343.
- 4 P. Gowik, T.M. Klapötke, K. Siems und U. Thewalt, J. Organomet. Chem., 431 (1992) 47.
- 5 P. Gowik und T.M. Klapötke, J. Fluorine Chem., 47 (1990) 273.
- 6 T.S. Cameron, T.M. Klapötke, A. Schulz und J. Valkonen, J. Chem. Soc., Dalton Trans., (1993) 659.
- 7 P.K. Gowik und T.M. Klapötke, J. Fluorine Chem., 54 (1991) 26.
- 8 G.M. Sheldrick, SHELXS86, in G.M. Sheldrick, C. Krüger und R. Godard (Hrsg.), Crystallographic Computing 3, Oxford University Press, Oxford, 1985, 175.
- 9 G.M. Sheldrick, sheLx76, Program for Crystal Structure Determination, University of Cambridge, Cambridge, 1976.
- 10 D.T. Cromer und J.T. Waber, International Tables of X-ray Crystallography, Vol. IV, Kynoch, Birmingham, 1974.
- 11 J.A. Ibers und W.C. Hamilton, Acta Cryst., 17 (1964) 781.
- 12 S. Motherwell und W. Clegg, PLUTO, Program for Plotting Molecular and Crystal Structures, University of Cambridge, Cambridge, 1978.
- 13 J.C. Green, M.L.H. Green und C.K. Prout, J. Chem. Soc., Chem. Commun., (1972) 421.
- 14 J.W. Lauher und R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- 15 P. Gowik und T.M. Klapötke, J. Organomet. Chem., 368 (1989) 35.
- 16 G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 3, Aufl., F. Enke, Stuttgart, 1954.
- 17 J.A. Creighton und T.J. Sinclair, Spectrochim. Acta, 35A (1979) 507.